Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4991, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591859

RESUMO

Activation of the KRAS oncogene is a source of replication stress, but how this stress is generated and how it is tolerated by cancer cells remain poorly understood. Here we show that induction of KRASG12V expression in untransformed cells triggers H3K27me3 and HP1-associated chromatin compaction in an RNA transcription dependent manner, resulting in replication fork slowing and cell death. Furthermore, elevated ATR expression is necessary and sufficient for tolerance of KRASG12V-induced replication stress to expand replication stress-tolerant cells (RSTCs). PrimPol is phosphorylated at Ser255, a potential Chk1 substrate site, under KRASG12V-induced replication stress and promotes repriming to maintain fork progression and cell survival in an ATR/Chk1-dependent manner. However, ssDNA gaps are generated at heterochromatin by PrimPol-dependent repriming, leading to genomic instability. These results reveal a role of ATR-PrimPol in enabling precancerous cells to survive KRAS-induced replication stress and expand clonally with accumulation of genomic instability.


Assuntos
Heterocromatina , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Cromatina , DNA Primase , DNA Polimerase Dirigida por DNA , Instabilidade Genômica , Heterocromatina/genética , Enzimas Multifuncionais , Proteínas Proto-Oncogênicas p21(ras)/genética
2.
Cancer Sci ; 114(7): 2709-2721, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37189251

RESUMO

DNA replication stress (RS) causes genomic instability and vulnerability in cancer cells. To counteract RS, cells have evolved various mechanisms involving the ATR kinase signaling pathway, which regulates origin firing, cell cycle checkpoints, and fork stabilization to secure the fidelity of replication. However, ATR signaling also alleviates RS to support cell survival by driving RS tolerance, thereby contributing to therapeutic resistance. Cancer cells harboring genetic mutations and other changes that disrupt normal DNA replication increase the risk of DNA damage and the levels of RS, conferring addiction to ATR activity for sustainable replication and susceptibility to therapeutic approaches using ATR inhibitors (ATRis). Therefore, clinical trials are currently being conducted to evaluate the efficacy of ATRis as monotherapies or in combination with other drugs and biomarkers. In this review, we discuss recent advances in the elucidation of the mechanisms by which ATR functions in the RS response and its therapeutic relevance when utilizing ATRis.


Assuntos
Dano ao DNA , Neoplasias , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Pontos de Checagem do Ciclo Celular , Replicação do DNA , Quinase 1 do Ponto de Checagem/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
3.
J Biol Chem ; 297(1): 100882, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34144037

RESUMO

Alteration of RNA splicing is a hallmark of cellular senescence, which is associated with age-related disease and cancer development. However, the roles of splicing factors in cellular senescence are not fully understood. In this study, we identified the splicing factor PRPF19 as a critical regulator of cellular senescence in normal human diploid fibroblasts. PRPF19 was downregulated during replicative senescence, and PRPF19 knockdown prematurely induced senescence-like cell cycle arrest through the p53-p21 pathway. RNA-sequencing analysis revealed that PRPF19 knockdown caused a switch of the MDM4 splicing isoform from stable full-length MDM4-FL to unstable MDM4-S lacking exon 6. We also found that PRPF19 regulates MDM4 splicing by promoting the physical interaction of other splicing factors, PRPF3 and PRPF8, which are key components of the core spliceosome, U4/U6.U5 tri-snRNP. Given that MDM4 is a major negative regulator of p53, our findings imply that PRPF19 downregulation inhibits MDM4-mediated p53 inactivation, resulting in induction of cellular senescence. Thus, PRPF19 plays an important role in the induction of p53-dependent cellular senescence.


Assuntos
Processamento Alternativo , Proteínas de Ciclo Celular/genética , Senescência Celular , Enzimas Reparadoras do DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA/genética , Células HEK293 , Humanos , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Processamento de RNA/genética , Spliceossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...